Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(12): 8988-8995, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478913

RESUMEN

Solid-state fabricated carbon nanotube (CNT) sheets have shown promise as thermoacoustic (TA) sound generators, emitting tunable sound waves across a broad frequency spectrum (1-105 Hz) due to their ultralow specific heat capacity. However, their applications as underwater TA sound generators are limited by the reduced mechanical strength of CNT sheets in aqueous environments. In this study, we present a mechanically robust underwater TA device constructed from a three-dimensional (3D) tetrapodal assembly of carbon nanotubes (t-CNTs). These structures feature a high porosity (>99.9%) and a double-hollowed network of well-interconnected CNTs. We systematically explore the impact of different dimensions of t-CNTs and various annealing procedures on sound generation performance. Furnace-annealed t-CNTs, in contrast to directly resistive Joule heating annealing, provide superior, continuous, and homogeneous hydrophobicity across the surface of bulk t-CNTs. As a result, the t-CNTs-based underwater TA device demonstrates stable, smooth, and broad-spectrum sound generation within the frequency range of 1 × 102 to 1 × 104 Hz, along with a weak resonance response. Furthermore, these devices exhibit enhanced and more stable sound generation performance at nonresonance frequencies compared to regular CNT-based devices. This study contributes to advancing the development of underwater TA devices with characteristics such as being nonresonant, high-performing, flexible, elastically compressible, and reliable, enabling operation across a broad frequency range.

2.
Bioinspir Biomim ; 19(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38430560

RESUMEN

In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (µBots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For aµBot equipped with each caudal fin (andµBot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control ofµBot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10-4Pa m4(∼10.6 Hz) and stiffness >10-4Pa m4(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10-4Pa m4, with theµBot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for theµBots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship inµBot swimming.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Animales , Natación , Fenómenos Biomecánicos , Fenómenos Físicos , Aletas de Animales
3.
J R Soc Interface ; 21(212): 20240036, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38531411

RESUMEN

Fish locomotion emerges from diverse interactions among deformable structures, surrounding fluids and neuromuscular activations, i.e. fluid-structure interactions (FSI) controlled by fish's motor systems. Previous studies suggested that such motor-controlled FSI may possess embodied traits. However, their implications in motor learning, neuromuscular control, gait generation, and swimming performance remain to be uncovered. Using robot models, we studied the embodied traits in fish-inspired swimming. We developed modular robots with various designs and used central pattern generators (CPGs) to control the torque acting on robot body. We used reinforcement learning to learn CPG parameters for maximizing the swimming speed. The results showed that motor frequency converged faster than other parameters, and the emergent swimming gaits were robust against disruptions applied to motor control. For all robots and frequencies tested, swimming speed was proportional to the mean undulation velocity of body and caudal-fin combined, yielding an invariant, undulation-based Strouhal number. The Strouhal number also revealed two fundamental classes of undulatory swimming in both biological and robotic fishes. The robot actuators were also demonstrated to function as motors, virtual springs and virtual masses. These results provide novel insights in understanding fish-inspired locomotion.


Asunto(s)
Robótica , Natación , Animales , Robótica/métodos , Fenómenos Biomecánicos , Peces , Locomoción
4.
Nat Commun ; 15(1): 772, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278790

RESUMEN

Biological molecule-semiconductor interfacing has triggered numerous opportunities in applied physics such as bio-assisted data storage and computation, brain-computer interface, and advanced distributed bio-sensing. The introduction of electronics into biological embodiment is being quickly developed as it has great potential in providing adaptivity and improving functionality. Reciprocally, introducing biomaterials into semiconductors to manifest bio-mimetic functionality is impactful in triggering new enhanced mechanisms. In this study, we utilize the vulnerable perovskite semiconductors as a platform to understand if certain types of biomolecules can regulate the lattice and endow a unique mechanism for stabilizing the metastable perovskite lattice. Three tiers of biomolecules have been systematically tested and the results reveal a fundamental mechanism for the formation of a "reverse-micelle" structure. Systematic exploration of a large set of biomolecules led to the discovery of guiding principle for down-selection of biomolecules which extends the classic emulsion theory to this hybrid systems. Results demonstrate that by introducing biomaterials into semiconductors, natural phenomena typically observed in biological systems can also be incorporated into semiconducting crystals, providing a new perspective to engineer existing synthetic materials.


Asunto(s)
Compuestos de Calcio , Micelas , Óxidos , Titanio , Óxidos/química , Semiconductores , Materiales Biocompatibles
5.
IEEE Trans Biomed Circuits Syst ; 18(2): 383-395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37976195

RESUMEN

Wireless interrogation (power and data transfer) of biomedical implants, miniaturized to millimeter (mm) dimensions, is critical for their chronic operation. Achieving simultaneous wireless power and data transfer at deep sites reliably within safety limits for closed-loop sensing/actuation functions of mm-sized implants is challenging. To enable this operation, a hybrid magnetic-ultrasonic interrogation approach (called MagSonic) is realized through a single magnetoelectric (ME) transducer at the implant that can generate and receive both magnetic field and ultrasound. The fabricated mm-sized bar-shaped ME transducer (5.2×2×1.6 mm3) operates at acoustic wave resonance, functioning at sub-MHz frequencies. For the first time, we demonstrate wireless power reception through one modality (magnetic field or ultrasound) and simultaneous uplink data transmission using the other. At 40 mm depth, the MagSonic link could achieve 100 kbps uplink data rate (bit error rate ≤ 10-5) using 190 pJ/bit transmitted energy and 8 mW delivered power in tissue. The robustness of the MagSonic interrogation link against power carrier interference and misalignments is also demonstrated.


Asunto(s)
Ultrasonido , Tecnología Inalámbrica , Diseño de Equipo , Prótesis e Implantes , Campos Magnéticos , Transductores
6.
Adv Mater ; 35(45): e2302554, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37406283

RESUMEN

Relaxor ferroelectrics (RFEs) are being actively investigated for energy-storage applications due to their large electric-field-induced polarization with slim hysteresis and fast energy charging-discharging capability. Here, a novel nanograin engineering approach based upon high kinetic energy deposition is reported, for mechanically inducing the RFE behavior in a normal ferroelectric Pb(Zr0.52 Ti0.48 )O3 (PZT), which results in simultaneous enhancement in the dielectric breakdown strength (EDBS ) and polarization. Mechanically transformed relaxor thick films with 4 µm thickness exhibit an exceptional EDBS of 540 MV m-1 and reduced hysteresis with large unsaturated polarization (103.6 µC cm-2 ), resulting in a record high energy-storage density of 124.1 J cm-3 and a power density of 64.5 MW cm-3 . This fundamental advancement is correlated with the generalized nanostructure design that comprises nanocrystalline phases embedded within the amorphous matrix. Microstructure-tailored ferroelectric behavior overcomes the limitations imposed by traditional compositional design methods and provides a feasible pathway for realization of high-performance energy-storage materials.

7.
ACS Appl Mater Interfaces ; 15(29): 35140-35148, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37458990

RESUMEN

Exploring low-grade waste heat energy harvesting is crucial to address increasing environmental concerns. Thermomagnetic materials are magnetic phase change materials that enable energy harvesting from low-temperature gradients. To achieve a high thermomagnetic conversion efficiency, there are three main material requirements: (i) magnetic phase transition near room temperature, (ii) substantial change in magnetization with temperature, and (iii) high thermal conductivity. Here, we demonstrate a high-performance Gd5Si2.4Ge1.6 thermomagnetic alloy that meets these three requirements. The magnetic phase transition temperature was successfully shifted to 306 K by introducing Ge doping in Gd5Si4, and a sharper and more symmetric magnetization behavior with saturation magnetization of Mmax = 70 emu/g at a 2 T magnetic field was achieved in the ferromagnetic state. The addition of SeS2, as a low-temperature sintering aid, to the Gd-Si-Ge alloy improved the material's density and thermal conductivity by ∼45 and ∼275%, respectively. Our results confirm that the (Gd5Si2.4Ge1.6)0.9(SeS2)0.1 alloy is a suitable composite material for low-grade waste heat recovery in thermomagnetic applications.

8.
Nat Commun ; 14(1): 3300, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280195

RESUMEN

To achieve optimal thermoelectric performance, it is crucial to manipulate the scattering processes within materials to decouple the transport of phonons and electrons. In half-Heusler (hH) compounds, selective defect reduction can significantly improve performance due to the weak electron-acoustic phonon interaction. This study utilized Sb-pressure controlled annealing process to modulate the microstructure and point defects of Nb0.55Ta0.40Ti0.05FeSb compound, resulting in a 100% increase in carrier mobility and a maximum power factor of 78 µW cm-1 K-2, approaching the theoretical prediction for NbFeSb single crystal. This approach yielded the highest average zT of ~0.86 among hH in the temperature range of 300-873 K. The use of this material led to a 210% enhancement in cooling power density compared to Bi2Te3-based devices and a conversion efficiency of 12%. These results demonstrate a promising strategy for optimizing hH materials for near-room-temperature thermoelectric applications.

9.
Adv Mater ; 35(32): e2303553, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37199707

RESUMEN

Magnetoelectric (ME) film composites consisting of piezoelectric and magnetostrictive materials are promising candidates for application in magnetic field sensors, energy harvesters, and ME antennas. Conventionally, high-temperature annealing is required to crystallize piezoelectric films, restricting the use of heat-sensitive magnetostrictive substrates that enhance ME coupling. Herein, a synergetic approach is demonstrated for fabricating ME film composites that combines aerosol deposition and instantaneous thermal treatment based on intense pulsed light (IPL) radiation to form piezoelectric Pb(Zr,Ti)O3 (PZT) thick films on an amorphous Metglas substrate. IPL rapidly anneals PZT films within a few milliseconds without damaging the underlying Metglas. To optimize the IPL irradiation conditions, the temperature distribution inside the PZT/Metglas film is determined using transient photothermal computational simulation. The PZT/Metglas films are annealed using different IPL pulse durations to determine the structure-property relationship. IPL treatment results in an enhanced crystallinity of the PZT, thus improving the dielectric, piezoelectric, and ME properties of the composite films. An ultrahigh off-resonance ME coupling (≈20 V cm-1  Oe-1 ) is obtained for the PZT/Metglas film that is IPL annealed at a pulse width of 0.75 ms (an order of magnitude higher than that reported for other ME films), confirming the potential for next-generation, miniaturized, and high-performance ME devices.

10.
Sci Adv ; 9(15): eade2338, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058567

RESUMEN

The retina is the essential part of the human visual system that receives light, converts it to neural signal, and transmits to brain for visual recognition. The red, green, and blue (R/G/B) cone retina cells are natural narrowband photodetectors (PDs) sensitive to R/G/B lights. Connecting with these cone cells, a multilayer neuro-network in the retina provides neuromorphic preprocessing before transmitting to brain. Inspired by this sophistication, we develop the narrowband (NB) imaging sensor combining R/G/B perovskite NB sensor array (mimicking the R/G/B photoreceptors) with a neuromorphic algorithm (mimicking the intermediate neural network) for high-fidelity panchromatic imaging. Compared to commercial sensors, we use perovskite "intrinsic" NB PD to exempt the complex optical filter array. In addition, we use an asymmetric device configuration to collect photocurrent without external bias, enabling a power-free photodetection feature. These results display a promising design for efficient and intelligent panchromatic imaging.

11.
Adv Mater ; 35(32): e2302484, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37120757

RESUMEN

The electron-transport layer (ETL) plays an important role in improving the performance of flexible perovskite solar cells (F-PSCs). Herein, a room-temperature-processed SnO2 :OH ETL is demonstrated, that exhibits reduced defect density, in particular lower oxygen vacancy concentration, with better energy band alignment and more wettable surface for quality perovskite deposition. More importantly, an efficient electron-transfer channel is produced between the ETL and the perovskite layer due to the formation of hydrogen bonds at the interface, resulting in enhanced electron extraction from the perovskite. As a result, the efficiency of a large-area (36.50 cm2 ) flexible perovskite solar module based on MAPbI3 is increased to as high as 18.71%; this is thought to be the highest reported PCE value for flexible perovskite solar modules to date. In addition, it exhibits high durability while maintaining over 83% of its initial PCE after flexing test cycles. Further, F-PSCs with SnO2 :OH show remarkably long-term stability, owing to a high quality of the perovskite film and a strong coupling between the SnO2 :OH and perovskite layer caused by hydrogen bonds, which successfully inhibits moisture permeation.

12.
Adv Mater ; 35(20): e2210407, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36868560

RESUMEN

Waste-heat electricity generation using high-efficiency solid-state conversion technology can significantly decrease dependence on fossil fuels. Here, a synergistical optimization of layered half-Heusler (hH) materials and module to improve thermoelectric conversion efficiency is reported. This is realized by manufacturing multiple thermoelectric materials with major compositional variations and temperature-gradient-coupled carrier distribution by one-step spark plasma sintering. This strategy provides a solution to overcome the intrinsic concomitants of the conventional segmented architecture that only considers the matching of the figure of merit (zT) with the temperature gradient. The current design is dedicated to temperature-gradient-coupled resistivity and compatibility matching, optimum zT matching, and reducing contact resistance sources. By enhancing the quality factor of the materials by Sb-vapor-pressure-induced annealing, a superior zT of 1.47 at 973 K is achieved for (Nb, Hf)FeSb hH alloys. Along with the low-temperature high-zT hH alloys of (Nb, Ta, Ti, V)FeSb, the single stage layered hH modules are developed with efficiencies of ≈15.2% and ≈13.5% for the single-leg and unicouple thermoelectric modules, respectively, under ΔT of 670 K. Therefore, this work has a transformative impact on the design and development of next-generation thermoelectric generators for any thermoelectric material families.

13.
Nat Mater ; 22(3): 329-337, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36849816

RESUMEN

Stability and current-voltage hysteresis stand as major obstacles to the commercialization of metal halide perovskites. Both phenomena have been associated with ion migration, with anecdotal evidence that stable devices yield low hysteresis. However, the underlying mechanisms of the complex stability-hysteresis link remain elusive. Here we present a multiscale diffusion framework that describes vacancy-mediated halide diffusion in polycrystalline metal halide perovskites, differentiating fast grain boundary diffusivity from volume diffusivity that is two to four orders of magnitude slower. Our results reveal an inverse relationship between the activation energies of grain boundary and volume diffusions, such that stable metal halide perovskites exhibiting smaller volume diffusivities are associated with larger grain boundary diffusivities and reduced hysteresis. The elucidation of multiscale halide diffusion in metal halide perovskites reveals complex inner couplings between ion migration in the volume of grains versus grain boundaries, which in turn can predict the stability and hysteresis of metal halide perovskites, providing a clearer path to addressing the outstanding challenges of the field.

14.
ACS Appl Mater Interfaces ; 15(5): 6584-6593, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36692991

RESUMEN

A lead-free (K,Na)NbO3-based piezoelectric ceramic is textured along the (001) direction using the NaNbO3 (NN) seeds. The composition 0.96(K0.5Na0.5)(Nb0.965Sb0.035)O3-0.01CaZrO3-0.03(Bi0.5K0.5)HfO3 (KNN) is found to provide an excellent combination of electromechanical coefficients at room temperature. The textured composition with 5 wt % NN template (KNN-5NN) exhibits considerably improved electromechanical coefficients, d33 ∼ 590 pC/N, k31 ∼ 0.46, and d31 ∼ 215 ×10-12 C/N, at room temperature. A flexible piezoelectric energy harvester (F-PEH) is fabricated using the textured KNN-5NN ceramic and tested under cyclic force. F-PEH exhibits enhanced output voltage (Voc ∼ 25 V), current (I ∼ 0.4 µA), and power density (PD ∼ 5.5 mW/m2) (RL of 10 MΩ) in the off-resonance frequency regime. In comparison to the random ceramic KNN-0NN-based F-PEH (Voc ∼ 8 V and I ∼ 0.1 µA), the textured F-PEH significantly outperformed energy harvesting capability due to the large figure-of-merit value (d31 × g31) ∼ 3354 ×10-15 m3/J. This work provides a methodology for texturing lead-free materials and further implementing them in flexible energy harvesting devices and sensors.

15.
ACS Appl Mater Interfaces ; 15(2): 2961-2970, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598771

RESUMEN

Thermoelectric (TE) materials have made rapid advancement in the past decade, paving the pathway toward the design of solid-state waste heat recovery systems. The next requirement in the design process is realization of full-scale multistage TE devices in the medium to high temperature range for enhanced power generation. Here, we report the design and manufacturing of full-scale skutterudite (SKD)/half-Heusler (hH) cascaded TE devices with 49-couple TE legs for each stage. The automated pick-and-place tool is employed for module fabrication providing overall high manufacturing process efficiency and repeatability. Optimized Ti/Ni/Au coating layers are developed for metallization as the diffusion barrier and electrode contact layers. The Cu-Sn transient liquid phase sintering technique is utilized for SKD and hH stages, which provides a high strength bonding and very low contact resistance. A remarkably high output power of 38.3 W with a device power density of 2.8 W·cm-2 at a temperature gradient of 513 °C is achieved. These results provide an avenue for widespread utilization of TE technology in waste heat recovery applications.

16.
Adv Mater ; 35(11): e2208994, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36566084

RESUMEN

Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low- and high-temperature regimes. However, there is an urgent demand for high-performance TE materials working in the mid-temperature range (400-700 K). Herein, p-type AgSbTe2 materials stabilized with S and Se co-doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax ) of 2.3 at 673 K and an average figure of merit (zTave ) of 1.59 over the wide temperature range of 300-673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n-type Ag2 Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single-leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high-performance TE material in the mid-temperature range.

17.
Small ; 19(1): e2204454, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36382574

RESUMEN

Piezoelectric materials should simultaneously possess the soft properties (high piezoelectric coefficient, d33 ; high voltage coefficient, g33 ; high electromechanical coupling factor, k) and hard properties (high mechanical quality factor, Qm ; low dielectric loss, tan δ) along with wide operation temperature (e.g., high rhombohedral-tetragonal phase transition temperature Tr-t ) for covering off-resonance (figure of merit (FOM), d33  × g33 ) and on-resonance (FOM, Qm  × k2 ) applications. However, achieving hard and soft piezoelectric properties simultaneously along with high transition temperature is quite challenging since these properties are inversely related to each other. Here, through a synergistic design strategy of combining composition/phase selection, crystallographic texturing, defect engineering, and water quenching technique, <001> textured 2 mol% MnO2 doped 0.19PIN-0.445PSN-0.365PT ceramics exhibiting giant FOM values of Qm  × k 31 2 $k_{31}^2$ (227-261) along with high d33  × g33 (28-35 × 10-12 m2 N-1 ), low tan δ (0.3-0.39%) and high Tr-t of 140-190 °C, which is far beyond the performance of the state-of-the-art piezoelectric materials, are fabricated. Further, a novel water quenching (WQ) room temperature poling technique, which results in enhanced piezoelectricity of textured MnO2 doped PIN-PSN-PT ceramics, is reported. Based upon the experiments and phase-field modeling, the enhanced piezoelectricity is explained in terms of the quenching-induced rhombohedral phase formation. These findings will have tremendous impact on development of high performance off-resonance and on-resonance piezoelectric devices with high stability.

18.
Nat Commun ; 13(1): 7399, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456593

RESUMEN

Halide perovskites show ubiquitous presences in growing fields at both fundamental and applied levels. Discovery, investigation, and application of innovative perovskites are heavily dependent on the synthetic methodology in terms of time-/yield-/effort-/energy- efficiency. Conventional wet chemistry method provides the easiness for growing thin film samples, but represents as an inefficient way for bulk crystal synthesis. To overcome these, here we report a universal solid state-based route for synthesizing high-quality perovskites, by means of simultaneously applying both electric and mechanical stress fields during the synthesis, i.e., the electrical and mechanical field-assisted sintering technique. We employ various perovskite compositions and arbitrary geometric designs for demonstration in this report, and establish such synthetic route with uniqueness of ultrahigh yield, fast processing and solvent-free nature, along with bulk products of exceptional quality approaching to single crystals. We exemplify the applications of the as-synthesized perovskites in photodetection and thermoelectric as well as other potentials to open extra chapters for future technical development.

19.
Biosensors (Basel) ; 12(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36290974

RESUMEN

In order to ensure the health and welfare of livestock, there has been an emphasis on precision farming of ruminant animals. Monitoring the life index of ruminant animals is of importance for intelligent farming. Here, a wearable sensor for monitoring ultraviolet (UV) radiation is demonstrated to understand the effect of primary and secondary photosensitization on dairy animals. Thin films of wide bandgap semiconductor zinc oxide (ZnO) comprising multilevel of nanostructures from microparticles (MP) to nanoparticles (NP), and tetrapod (T-ZnO), were prepared as the UV sensing active materials. The sensitivity was evaluated by exposing the films to various radiation sources, i.e., 365 nm (UV A), 302 nm (UV B), and 254 nm (UV C), and measuring the electrical resistance change. T-ZnO is found to exhibit higher sensitivity and stable response (on/off) upon exposure to UV A and UV B radiation, which is attributed to their higher surface area, aspect ratio, porosity, and interconnective networks inducing a high density of chemical interaction sites and consequently improved photocurrent generation. A wearable sensor using T-ZnO is packaged and attached to a collar for dynamic monitoring of UV response on ruminant animals (e.g., sheep in this study). The excellent performance of T-ZnO wearable sensors for ruminant animals also holds the potential for a wider range of applications such as residential buildings and public spaces.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Ovinos , Animales , Óxido de Zinc/química , Ganado , Nanoestructuras/química , Agricultura , Rumiantes
20.
Nat Commun ; 13(1): 3565, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732653

RESUMEN

Electromechanical coupling factor, k, of piezoelectric materials determines the conversion efficiency of mechanical to electrical energy or electrical to mechanical energy. Here, we provide an fundamental approach to design piezoelectric materials that provide near-ideal magnitude of k, via exploiting the electrocrystalline anisotropy through fabrication of grain-oriented or textured ceramics. Coupled phase field simulation and experimental investigation on <001> textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics illustrate that k can reach same magnitude as that for a single crystal, far beyond the average value of traditional ceramics. To provide atomistic-scale understanding of our approach, we employ a theoretical model to determine the physical origin of k in perovskite ferroelectrics and find that strong covalent bonding between B-site cation and oxygen via d-p hybridization contributes most towards the magnitude of k. This demonstration of near-ideal k value in textured ceramics will have tremendous impact on design of ultra-wide bandwidth, high efficiency, high power density, and high stability piezoelectric devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...